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ABSTRACT 

The general linear programming problem Is considered In vhich the 

coefficients of the objective function to be maximized are assumed to be 

random variables vlth a knovn multinomial distribution.    Three deterministic 

reformulations Involve maximizing the expected value, the a-fractlle 

(a fixed, 0 < a < ^), and the probability of exceeding a predetermined 

level of payoff, respectively.    In this paper the author's previous 

work on "bl-criterion programs" Is applied to derive an algorithm for 

routinely and efficiently solving the second and third reformulations.    A 

by-product of the calculations in each case is the tradeoff-curve betveen 

the criterion being maximized and expected payoff.    The intimate relationships 

betveen all three reformulations are illuminated. 
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ON STOCHASTIC LINEAR PROGRAMMING 

AaM. Geoffrlon 

1. INTRODUCTION 

Consider the problem 

(1) Maximize  p x subject to Ax $ "b , 

vhere x is an n-vector, p is a random n-vector with a knovn distribution, 

and the linear constraints are deterministic.  x must te chosen knowing 

only the distribution of p. Three deterministic reformulations of (l) are: 

(2) Maximize E(x) subject to Ax < b, 

where E denotes the expected value of p x; 

(3) Maximize F (x) subject to Ax < b, 
a = 

where 0 < c < 1 is a predetermined constant and F (x) is the 
a 

~t Qf-fractile of   p x;    and 

(^) Maximize    P (x)    subject to   Ax < b , 

where    P (x)    is probability that   p x   equals or exceeds a predetermined 

"aspiration" level   H   of payoff.    The expected value reformulation (2) has 

the computational advantage that It leads to an ordinary linear program to 

be solved, whereas the fractile and "aspiration" reformulations -- which can 

be more realistic in certain situations — lead to nonlinear programs. 

The purpose of this paper is two-fold:    to apply the author's previous 

work on "bl-crlterlon programs"    go as to obtain an algorithm for 

routinely      solving (3) or (4) by parametric quadratic programming;  and to 

illuminate the intimate relationships between (2),   (3) and {k).    The algorithm 



presented here, although turning out to have much In common with certain 

previous approaches to (3) or {k)t  offers a unified, rigorous, non-graphical, 

and computationally efficient approach to (3) and (4), It has the additional 

advantage of yielding as a by-product of the calculations the tradeoff curve 

between the criterion function being maximized and E(x). 

For simplicity we assume that p is multinormal with mean vector 

p, and covariance matrix Z, so that p x is N^ x, x Ex); that (2) has a 

finite optimal value Mj and that x öc > 0 for all feasible x. 

We conclude this Introduction with some preliminary remarks on the 

fractile and aspiration criteria, including a survey of known computational 

approaches• 

The Fractile Criterion 

Since the .5-fractile (i.e., the median)of a normally distributed 

random variable coincides with its mean, (3) with a = ,5 is identical with 

(2), Maximizing the or-fractile with or < .5 should appeal to some conserva- 

tive decision-makers because it tends to control the lower tail of the 

distribution of payoffs,-' 

It is easy to show that 

Fa(x) = ^x + r1^) /x^ , 

where    $    is the Standardized Normal Distribution Function,    When 

0 < a < ,5;  as we assume henceforth,    $" (a) < 0    and    (3)    is a concave 

program,  since   /x*Ex   is convex [9, p. 195].    Note, however, that the 

criterion function is not differentlable when   x^Zx   vanishes, thus limiting 

l/    Cf. Baumol [3]> who seems to be getting at this idea in the context 
of the portfolio selection problem, which is a special but important 
case of (l). 



the applicability of gradient-type optimization procedures.    Elsenberg [73* 

Sinha 112],  and others have stepped into the breach with theoretical results 

that are designed to facilitate a computational solution. 

Computational procedures for (3) have been offered by Kataoka [9]» 

who proposed and partially justified an iterative procedure that can be viewed 

as a discretized variant of the algorithm derived here, and by Slnha ilS], 

who developed an elaborate specialized duality theory that leads to a 

computational solution involving linear and quadratic programming.    It can 

also be solved by an obvious geometrical construction that requires the graph 

of the (E,a)- tradeoff curve arsociated with (l). I.e., the image of all 

feasible   x   with the property that a higher value of   ^ x    can be attained 

only at the expense of a higher value of   /""x ix ,    and a lower value of 

/""x^Ix   only at the expense of a lower value of   \i x.    The    (E,a)-tradeoff 

curve is most conveniently obtained by a square-root transformation from 

the (E,a )-tradeoff curve.    The latter should be computed, as pointed out 

by Markowltz  [lC], by parametric quadratic programming.    This use of parametric 

quadratic programming Is at the heart of the present approach to (3) and 

(10, but we do not require a graphical construction and only compute a 

relevant subset of the (E,a )- tradeoff curve. 

The Aspiration Criterion 

Clearly 

Pj^c) = 1 - M *±^)   5  $ ( &&-)   . 
/x^Ex /x^iic 

Since    $    is strictly Increasing,  (k) has the same optimal solution set as 

(UA) Maximize ^ X"H subject to    Ax < b. 
/x?5c = 
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When the aspiration level H is taken as M (the optimal value of (2)), 

it is easily seen that (UA) has an optimal value 0 and that this value is 

achieved for those feasible x for which M-^X = M. Hence (^A) with K = M 

has the same optimal solution set as (2), and the maximum probability in (4) 

is ^ (since i{0)  = §). As before, we are interested in the conservative 

decision-maker, who would undoubtedly take H < M. Such a choice is necessary 

and sufficient for the maximum probability in (4) to be > 0.5* and we assume 

it henceforth. 

The aspiration criterion program (^A) can be solved by a simple geometrical 

construction noticed by Roy [ll], who presented it for a special case, providing 

that the (E,CT)- tradeoff curve is available. The method can be modified to 

work almost as easily with the (E,a^)- tradeoff curve, which as we pointed 

out above is easier to compute. 

See Charnes and Cooper [h]  for additional discussion of the aspiration 

criterion. They also show how to reduce (kA)  to a program that is linear 

except for one quadratic constraint. If this quadratic constraint were dealt 

with by the standard trick of taking it up into the objective function with an 

undetermined multiplier and applying quadratic programming, the result could 

be an algorithm that closely resembles the one given here. 

2. THE ALGORITHM 

In this section we view (3) and {k)  as if they were bi-criterion programs 

and derive an algorithm for each by applying the following result from [8]. 

Let it be desired to solve 

(5)       Maximize u^f^x)), P2(f2(x)) ), 
xeX 

■ '■' 



where X is a non-empty compact convex set in R > f,* fg^ p^f^.), PgCfo) 

are concave on X, p, and Pp are strictly increasing on the image of 

X under f, and fp, respectively, u is non-decreasing and quasiconcave 

(see, e.g., [l]) on the convex hull of the image of X under (p^f.,)* V^^i)* 

and all functions are continuous. Think of u^,*) as a utility function 

defining a preference ordering over pairs of values of the two criterion 

functions f. and f , on which the scale transformations p, and p« have 

been performed. Assume that a parametric programming algorithm is available 

for solving 

(6) Maximize    y ^(x) + (l-v) foU) 
xeX 1 d 

for each value of the parameter   Y   in the unit interval,  and that the 

resulting optimal solution function    X*(Y)   would be continuous on [0,1]. 

Then the function 

U(Y) «uCp^f^x^v))  ), P2(f2(x*(Y))  ) ) 

is continuous and unimodal on [0,1],   and if   Y*   maxinizes    U(Y) on [0,1] 

then   x*(Y*) is optimal in (5). 

Solving (3) 

Consider now (3).    Put 

X = {x: Ax <b) 

f^x) = ^x 

f2(x) = -x*^ 

p2(f2) = -/nfg 

uCp^^), p2(f2)) = p^^) - im\<*) P2(f2). 

.,." v-^E.^'"*   '~*^TT   T^TTSW1     ■  'Zi,   . 



It Is easy to verify that all of the assumptions required of (5)* which in 

this case is identical to (3), are satisfied save one:    the compactness of X. 
certain 

However, the only need for compactness is to ensure that   /     suprema are 

achieved.    The attainment of all suprema here follows from the non-negativity 

of   /"xtSx t    our assumption that (2) has a finite optimal value M, and 

the fact [2, Th.  l.j] that a concave quadratic polynomial bounded above on 

a convex polyhedral set achieves its constrained supremum.    Now (6) becomes 

(7) Maximize    Y ^x - (l-y) X*^    subject to    Ax < b, 

a parametric quadratic program.    Several algorithms are available for it 

(e.g.,   [lO],   [13],  [5]);  and they all yield an optimal solution function 

X*(Y) that is continuous on [0,1].    Hence the method quoted above applies, 

and we see how to solve (3) with the aid of any parametric quadratic programming 

code for (7). 

To solve (3) one may solve (?) with y = 1"^ and decrease y until the 

unimodal function p (x^fy)) achieves its maximum on [0,1]. When the maxl- a 
mizing y is reached,-'  say y , the parametric programming is stopped 

because the optimal solution x*(y ) of (3) has been found. For more complete 

details see [8], where the fact that the image of [0,1] under x*(y) is 

plecewise  linear is taken advantage of in an obvious way. 

Solving CO 

The assumption K < M guarantees that the optimal value of {kk)  is > 0. 

Therefore one can restrict attention in (UA) to feasible x such that 

2/ For a reason that will become apparent in the next section, y » 1 is a 
natural starting point -- although any other value in the unit interval 
could be used. 

3/ If the maximizing value is not unique, let y^ be the largest. 

'" ' UT *" • • 1- i" i 
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H x -H > 0.    In thi«5 region the maxlmand is quasi-concave.    Put 

X = {x: Ax < b,    p,tx-K > 0) 

f^x) = vtx 

f2(x) = ^Ix 

V^) = VH 

p2( f2) = - /^ 

UCP^^),   p2(f2)) = P^^)/ (-P2(f2)). 

Xc is easy to verify that all assumptions required of (5)* which in this 

case is identical to (^A),  are satisfied save the compactness X,    As before, 

this seeming difficulty is eliminated by the fact that all pertinent constrained 

suprema are achieved.    Furthermore,  (6; is again the parametric quadratic 

program (7).-'    Thus to solve (kA) one may solve (?) for    Y = 1   and decrease 

Y   until the unimodal function    (^X^Y)^)/ /X»(Y)£X*(Y)    reaches its 

maximum on [o,l].    When the maximizing    Y   is reached,-^ say    Y   *    the optimal 
K 

solution    X*(Y )   has been found.    Again, consult  [8] for details. 

3.    IKTERFRETIKG THE INTEEMEDIATE QUANTITIES 

The algorithm for solving (3) or {k) given In the previous section 

involves the computation of   X*(Y) (an optimal solution of the parametric 

quadratic program (?)) from right to left on the Interval EY^I] in one case 

and on [Y > 1] In the other.    Although x*^)    and    X*(Y ) are optimal solutions 

kj Technically, (?) must now include the constraint p.^x-n > 0. Since we 
shall take Y to be decreasing from 1, this constralnt~wlll never be 
binding before termination and can therefore be dropped. 

5/    If the maximizing value Is not unique, let    Y     "be t*16 largest. 

v.   •w—'iW£.-.-     T   y.      \~J''\: 



to (3) and (U), the intermediate x*{y)  are also of interest. We shall show 

in Theorems 3 and U of this section that the image in R of IY^I] under 

(E(X*(Y)), Fa(x*(Y)) ) is the complete (E, F^)- tradeoff curve, and that 

the image in R2 of U ,1] under (E(x*( Y))*P/(X*(Y)) ) is the complete 

(E, P )- tradeoff curve.-' We also show in Th. 2 that each intermediate 
H 

X*(Y) also solves (3) with a certain a    and (U) with a certain H. 

It will be notationally convenient in the sequel to refer to the following 

reparameterized version of (7): 

(7A)       Maximize ^x -  $xt£x sul Ject to Ax < b, 

where the parameter 0 traverses [o,»). For fixed ß e [O,«), (TA) is 

equivedent to (?) with Y = (l+0)' , and therefore has an optimal solution 

x*( rrg ) which with some abuse of notation we henceforth call simply x*(8). 

Let ß = (1-Yy)/Yft, and ß = (l-Y )/Y . Then (3) or (U) are solved by 

computing x*(ß) from left to right on [0,ß ] or [o, 8 ], respectively. 

Theorem 1: 

(i). Let a be fixed in the unit interval. E/ery optimal solution of 

(3) is also an optimal solution of (U) with H equal to the 

optimal value of (3). 

(li). Let K be fixed arbitrarily. Every optimal solution of (4) is 

also an optimal solution of (3) with (l-oO equal to the optimal 

value of (4). 

6/ Naturally X*(Y) also yields a portion of the (E,cr )-tradeoff curve, but 
this fact is of little more than passing Interest here. 
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Proof; Let x and x* be feasible. Then 

M-Sc + ^(cO y^Sx < v^x* + S'Hot) /$**%* 

if and only if 

litx - nV - r1^) /x^SPf   < - r^a) /T1^ 

if and only if 

M- x-M- x*-$" (a) /x* lix* 

 7^     < -*'1(«) 
/x Ix 

if and only if 

/x Qc /x* Sx* 

Hence for fixed x* the first inequality holds for all feasible x if and 

only if the last holds. The theorem follovs. 

This theorem points up a reciprocity between the fractile and aspiration 

criteria that holds in much more general circumstances than the one con- 

sidered here. 

Theorem 2; 

For 0 > 0, x*(e) (an optimal solution of (TA)) is also 

(i). optimal in (3) with a = $ (-2ß/x^ß^Zx^ß) ) 

(ii). optimal in (k)  with K = n^O) - 20x*(<3)t2x*(ß). 

Proof; Part (i), which is essentially equivalent to Th. 3 in [9]; can be 

proven by setting up the appropriate identification between the Kuhn-Tucker 

conditions for (TA) and for (3). Part (ii) follows from part (i) and 

Theorem l.i. 
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These two theorems give an interesting interpretation to the intermediate 

x*(ß). In the course of solving (3) with a  = Qfo(0 < Qf0 < ^) by the method 

of section 2, one automatically solves (3) with each value of a   between 

ot0   and ^ and {k)    with each value of H between  F (x*(ßa )) (which 
o    o 

must be < M) and M, Similarly, in the course of solving {h)  with H = K0 

(H0 < M) by the method of section 2,  one automatically solves {h)  with 

each value of K between K- and M and (3) with each value of a   between 

1-P (x*(0 )) (which must be < ^) and i. 
Ko   Ho 

Lemma; 

The function 2(Vx*(ß) ijc*(ß} is non-decreasing on[0,3 ], It assv 

the value 0 only at 0=0 and the value -§"" (ar) only at 3=0 , 

Proof; The proof requires two applications of a method often used for 

obtaining similar monotonicity results in parametric programming. 

Let 8° and ß  satisfy 0 < 6° < 3 < 6 . 

First we derive the preliminary inequality 

By the definitions of x*(ß0) and x^ß')* we have 

p-Mß«) - ßMßO^^ß') < liV(ß0) - ß0x*(ß0)t2x*(ß0) 

and 

nMß0) - ß'x^ßO^Zx^ß0) < M-MP') - ß'x^ß'^öc^p«). 

Sumraing and rearranging these inequalities, we find 

(ß'-ß0)(x*(ß')t Mß1) - x*(ßO)t2x*(ß0)) < 0, 

which upon division by (ß'-ß0) yields the preliminary inequality. 
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By Th. 2.1, x*(ß0) maximizes ^tx - 2ß0/x*(ß0Tt2x*(ßu) /^^ over 

all feasible, x. A similar assertion holds for x^B'), Applying the 

above argument to such programs in lieu of (TA), one obtains 

(B« /FTF^^TFJ -BT^T^^^CB0) ) {/^Wf^Wl 

./Z^?0)*^^) <  o. 

The preliminary inequality implies that the second factor is either negative 

or zero. In the first case, division by it yields that the first factor is 

i 0 

> 0; in the second case, the first factor is > 0 because B -0 > 0. Thus 

the first factor must be non-negative, and the desired monotonicity of 

2a/x*(B)tac*(B) is established. 

That the value 0 is assumed only at 6=0 follows from our assumption 

that x Ex > 0 for all feasible x ; that the value -$" (a) is assumed 

only at ß  follows from the nature of our algorithm for solving (3). 
Of 

The proof is complete. 

Theorem 3: 
traverses  t o 

As 6/ [0, ß^], (ti x*(ß), Ff/(x*(B))) traces in R  the complete 

(E,Fa)-tradeoff curve. 

Proof; Since x*(0) is optimal in (2), x*(Ba) is optimal in (3), and 

(n x*(ß), Fa(x*(ß))) on p), ß ] determines a curve by the continuity of 

x«(B), it is sufficient to show that x*(e) is (E, F^)-efficient on 
t 

(0,ßa). To show this it ik clfeprly sufficient to show that for 0 < ß < Ba 

there exists a scalar X,0 < X < 1, such that x*(3) maximizes 

(I-X)M. x*"X F (x) over all feasible x . This maximand simplifies to 

liVxrV) /^aT. For X=2B/x»( ß)t'Ex*(P}/( -«"V))» x*(B) indeed max- 

imizes it by  Th. 2.1 . The Lemma implies that this choice of X satisfies 
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0 < X < 1 . Hence x»(0) Is (E,?^)-efficient for 0 < 0 < B^, and 

the proof is complete. 

Theorem k: 

As 0 traverses [o, B ], (^»(ß), P (x*(P))) traces in R2 the 

complete (E, P )-tradeoff curve. 

Proof; Since x*(0) is optimal in (2), x*(B ) is optimal in (4), and 

(li. x*(ß), P (x*(ß))) on [0, B ] determines a curve by the continuity of 

x*(B), it is enough to show that x*(B) is (E, P XeffJcictt on (0,ß ). To 

shov this we shall resort to the definition of (L,P )-efficlency and demonstrate: 

for 0 < B< ß J one has 
H 

(8) P(x)<P(x*(B)) 

for all feasible x such that 

(9) M^M-VCß), 

with equality in (8) impling equality in (9) . 

Clearly one may uce (p, X-H)/ /x 2X  in place of P (x) in (8), Hence 
H 

(8) can he written 

(8A) (|A-K)/ /X^ZT < (/XO^-H)/ /^d^^TBl . 

The method of demonstration will use the theory of  linear programming, after 

some manipulation. 

Let    B    satisfy   0 < ß < 0^    .    By Th.  2.1, 

(10) M.tx-2B /Z*($f'5t*tJ) ^ST^ [iV(3)-2Px*(P)tlÄ*(ß) 

for all feasible x. It is therefore sufficient to show (8A) for all 

pairs (^x, /a^Sc) satisfying (9) and (10), with equality in (8A) 

implying equality in (9). It is now convenient to change notation. 

Let y. = M^X - ^x^ß), y2 = /x Sx . Then the proposition to be shown can 

be written as follows after rearranging (8A): 



1h 

(SB)      y1/^nß)
L2X*(ß) - (^tx*(e)-H)y2<-(^V(ß)-H) /x*(ß}v'£x*(ßJ . 

for all (y , y2) > 0 satisfying 

(10A)     y1 - 2ß/x*(0)
L2x*(ß) y2 < -2ßx*(ß)

t2Ä*(ß) i 

with equality in (8B) implying y^O. The identity of a simple linear 

program now becomes apparent, with the left-hand side of (8B) serving as 

a linear objective function to be maximized and (lOA) serving as a linear 

constraint. This linear program is feasible (e.g., take y^O and 

y« = /x^ ß) ^lix H ß) ).  The object then becomes to show that the optimal 

value of this linear program is equal to the right-hand side of (8B), and 

that y, necescarlly vanishes in any feasible (y^yg) pair that achieves 

this value. By the Dual Theorem and Complementary   Slr^     ss Theorem 

of linear programming [6], it is sufficient to demonstrate tnat the dual 

linear program is feasible, that its optimal value equals the right-hand 

side of (OB), and that the dual constraint corresponding to y^ necessarily 

is satisfied with strict inequality at every optimal dual solution. The 

dual linear program is: 

Minimize (-Sßx^ß^ZkMß)) 2 

subject to  z > / x*(e)t2x*(o) 

(-gß/xnß^ac-nß) ) z > - (tiV(ß) - H) 

z > 0 
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Prom our essumption that K < M, the continuity of x*(9) on [0,0 ], the 
H 

nature ex" our algorithm for (k),  and Th. 2,ii, it follows that 

H < p.tx*(0) _ 2ßx*(ß)t2>c*(ß) on [0, ß ). With this inequality it is 

now easy to verify that z* = (^x^ß) - H)/ 2ß /x^ßj^^ß) is the 

unique optimal solution, and consequently that the dual program has the 

requisite properties. This completes the demonstration. 

Theorems 3 end k    reveal why the initial value of ß was chosen to 

"be 0. Any ncn-nof^tive initial value coulc "be chosen and the algorithm 

would still solve (3) (resp, ('+)), perhaps evon wilh less calculation; but 

if the initial valu3 exceeds ß (resp. 3 )» then the intermediate 

x*(ß) will no loneor he (E,F ) (resp. (E,P )) - efricicn«. 

-^-■' ■"^ y :" 
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